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Appendix D: Safety Analysis Methodology 

Previous Work on Applying Statistical Techniques in Regional Safety 

Modeling 
 
Crash safety literature has produced a wide breadth of statistical techniques applied to variety of 
geographical entity when it comes to developing area-wide predictive crash models. Some of these 
previous studies are listed in a tabular format (Table 1) showing the types of spatial aggregation used, 
types of crashes modeled and modeling techniques adopted. This representation is not meant to be 
exhaustive and has excluded studies that modeled pedestrian and bicycle crashes deliberately to 
maintain relevancy to this study which models total and severe crash types only. The applied models, as 
shown in the Table, can be broadly characterized based on their spatial accountability in the model 
structure- thus, spatial and non-spatial models.  
 
Among a wide spectrum of non-spatial models it can be observed from the literature that Negative 
Binomial (NB) model structure is favored particularly because of its ability to handle overdispersed crash 
data well. And the list of studies that applied NB model in crash predictions for different spatial units are 
quiet long (Amoros and Laumon, 2003; Noland and Oh, 2004; Hadayeghi et al., 2003, 2006, 2007; 
Aguero-Valverde and Jovanis, 2006; Quddus, 2008; Lord and Mannering, 2010; Naderan and Shahi, 
2010; Abdel-Aty et al., 2011; Pirdavani et al., 2012; Karim et al., 2013; Pulugurtha et al., 2013). Since 
crashes are aggregated for a spatial entity, it is intuitive to consider the presence of spatial correlation in 
the model structure. But that increases the model complexity and data needs to some degree. Aguero-
Valverde (2013) argued that spatial models, by dint of accounting spatial correlation, has potential to 
increase model fit by estimating ‘pool strengths’ from the spatial neighbors, and spatial effects can be 
surrogates for unknown and relevant covariates (Dubin, 1988; Cressie, 1993). As shown in Table 1, 
similar to NB, spatial models are being widely explored for predicting macro-level crashes and specifying 
a hierarchical Bayesian model that can account for overdispersion appears to be a popular technique 
among the researchers (Aguero-Valverde and Jovanis, 2006; Quddus, 2008; Huang et al., 2010; Karim et 
al., 2013; Aguero-Valverde, 2013). This study applied both NB and Bayesian hierarchical models for 
forecasting total and severe crashes. Two forms of Bayesian models were specified- one without 
accounting for spatial correlation (i.e., non-spatial Bayesian) and another accounting for spatial 
correlation. As such, there were three candidate models to compare ‘classical versus Bayesian’ and ‘non-
spatial versus spatial’ modeling approaches. 
 
The need for proactively forecasting safety for long range transportation plans has been reverberated in 
many of these studies. For example, Karim et al. (2013) evaluated the spatial effects of the occurrence of 
crashes in the Traffic Analysis Zones (TAZs) of Metro Vancouver to improve model fit and inference 
capability understanding that their effort will allow transportation authorities and planners to estimate 
safety proactively ‘at a very early stage of transportation planning’. They (Karim et al., 2013) concluded 
that the spatial effects need to be considered in the crash prediction models to avoid any potential bias 
associated with model misspecification. Pulugurtha et al. (2013) estimated crashes for the TAZs of North 
Carolina based on land use characteristics and argued that their models can be used in safety conscious 
planning, land use decisions, and long range transportation plans. The authors (Pulugurtha et al., 2013) 
used NB models with a wide variety of land use covariates to model total, injury and property damage 
only (PDO) type crashes separately. Pirdavani et al. (2012) developed different zonal prediction models 
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for injury crashes and commented that the main purpose of their study was to develop planning-level 
predictive tool in order to evaluate safety for different travel demand management policies. 
This report investigates forecasts found from multiple crash models developed for mid-region of New 
Mexico comprising Bernalillo, Sandoval, Valencia, and Torrance County. A methodical long range 
transportation planning technique, known as scenario planning, was utilized for developing different 
scenarios which were then used for forecasting safety. A twenty-five year planning horizon (2015-2040) 
was adopted for the study.   
 
The rest of the report is structured as follows. The immediate next section describes the scenario 
planning process and the scenarios that were developed and applied in this study. The following section 
is about forecasting zonal parameters which illustrates the application of land use and travel demand 
models used for preparing datasets. The next two sections discuss crash models and parameter 
estimates. The section thereafter compares results from model forecasts for different planning 
scenarios. Finally the paper ends with a summary and concluding remarks. 
 

Scenario Planning 
 
Since 2004, the Federal Highway Administration (FHWA) has encouraged transportation-focused 
scenario planning as an enhancement of the traditional transportation planning process. Scenario 
planning techniques are designed to help practitioners to consider how future changes in 
transportation, land use, demographics, or other factors could affect communities. At the core of 
scenario planning lies identifying land-use patterns as a dynamic variable affecting transportation 
networks, investments, and operations. Other potential variables may include demographic, economic, 
political, and environmental trends. These variables are used to develop alternated ‘possibilities’ or 
‘scenarios’ that help stakeholders to understand how a region might look and function in the future, and 
make decisions for the present and prepare for future needs. (FHWA Scenario Planning Guidebook, 
February, 2011) 
 
Three alternative scenarios were developed in this study. Each scenario is briefly described below. 
 

Alternative 1 (Trend Scenario) 
 
This scenario continues the patterns from the early 2000s in which residential development was focused 
on single family housing in more peripheral parts of the region. This scenario assumes that commercial 
development is scattered across the region rather than in targeted centers. About half of new jobs, but 
about three-quarters of new housing are located west of the river (Rio Grande). Private vehicle travel 
remains the dominant mode for the vast majority of residents in the region. This scenario resembles 
continuing historical trend. Major scenario components include- 

 Low and medium-density residential housing in previously undeveloped areas 

 No particular emphasis on mixed-use development or along transit corridors 

 Commercial development is scattered around region rather than concentrated in particular 
areas 

 Assumes continued reliance on private vehicles for most trips. 
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Alternative 2 (Preferred Scenario) 
 
This scenario reflects a range of trends in housing preferences and travel behavior across the region. 
Parcels within a ½-mile radius of existing and future transit stops were designated for medium-density 
mixed-use development and multi-family, and those within a ¼-mile radius were designated for high-
density mixed-use. Emphasis is placed on compact development in targeted locations near transit to 
meet the demands of a range of age demographics. An increased preference for alternative modes and 
increased spending on public transportation was emphasized. Major scenario components include- 

 Development on activity centers and corridors near premium transit 

 Accessory dwelling units to meet senior and multi-generational housing needs 

 Multi-family housing near transit 

 Greater emphasis on mixed-use development 

 More transportation options and increased preference for proximity to services and 
entertainment. 

 

Alternative 3 (Preferred Constrained Scenario) 
 
This scenario reflects all the major components of Alternative 2 except a constraint was imposed on the 
road network. Each of these scenarios were developed for 2015-2040 forecast years. Unlike Alternate 2, 
this scenario restricted the growth of highway and transit network at year 2025. As such all growth 
beyond 2025 would be based on constrained network capacities. More detailed discussion on the 
networks are provided in the Travel Demand Model section. 
 

Forecasting Zonal Parameters 
 
The study utilizes 914 data analysis subzones (DASZ) which are geographic entities similar to traffic 
analysis zones (TAZ). These zones contain the entirety of four counties of New Mexico (Bernalillo, 
Sandoval, Valencia and Torrance County) comprising the Albuquerque metropolitan area.  
Figure 1 shows the study area and its relative location with respect to the state of New Mexico. A few 
DASZs (north of Torrance County and east of Bernalillo County) that were outside the County boundary 
(in  
Figure 1) were part of Santa Fe County. Crashes that took place between 2006 and 2010 were analyzed. 
Aggregated total crashes and severe crashes per DASZ were modeled using 2010 socioeconomic (SE) 
data as the independent variables. Severe crashes were defined as the sum of fatal and injury type 
crashes. Bernalillo is an urban County and captures the largest share of crashes in the study region. 
Valencia, Torrance and parts of Santa Fe County in the study area are mostly rural. About 88% of total 
crashes and about 86% of severe crashes took place in Bernalillo County alone. Together, Bernalillo and 
Sandoval County captured 95.3% of total crashes and 94.7% of severe crashes in the study area. Severe 
crashes were about 30% of the total crashes region-wide. 
 
For each scenario a land use model was specified. The land use model iteratively ran with two travel 
demand models. Land use models took a wide array of observed variables considering 2012 as the base 
year. This model then ran till 2040 forecast year. The following sub-sections discuss more on each of 
these models. 
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Land Use Model and Travel Demand Model 
 
The Open Platform for Urban Simulation (OPUS) was used for land use modeling. OPUS architecture is 
primarily based on the UrbanSim project (The Open Platform for Urban Simulation and UrbanSim 
Version 4.3, January, 2011). UrbanSim is a software-based simulation system that incorporates the 
interactions between land use, transportation, the economy, and the environment. It supports planning 
and analysis of urban development and helps explore the effects of infrastructure and policy choices on 
community outcomes such as motorized and non-motorized accessibility, housing affordability, etc. 
More on UrbanSim can be found at urbanism.org. Currently multiple planning organizations in USA have 
adopted UrbanSim for operational planning use; examples include- Maricopa Association of 
Governments, Metropolitan Transportation Commission, Puget Sound Regional Council, etc. 
 
The land use model utilized parcels as the smallest geographic entity for analyzing, aggregating, and 
creating the database structure. The OPUS base year database was developed using 2012 data which 
was used as initial inputs for starting each scenario simulation. Zonings for each of the alternative 
scenarios were input to OPUS. OPUS then produced a socioeconomic forecast for every five years 
between 2015 and 2040.  
 
The travel demand model (TDM) was built in Citilabs Cube 6.1.0. Table 2 and Table 3 show different 
networks that were used for different planning scenarios. Unlike the land use model, the travel model 
scenarios were built for years 2025 and 2040 only. Therefore, the travel time skim was fed from travel 
demand model to OPUS in 2025 and 2040 only. As mentioned earlier, Alternative 3 represents a 
constrained network scenario. For 2025, the Alternative 3 roadway and transit networks were 
constrained to their corresponding 2012 networks (without any improvement). For 2040, the Alternative 
3 roadway and transit networks were restricted to their corresponding 2025 networks. 
 

Iterative Modeling between OPUS and TDM 
 
Simulation of each scenario was started in UrbanSim. UrbanSim was interfaced with Cube at years 2025 
and 2040 where UrbanSim ‘called’ Cube to perform a TDM analysis to predict travel conditions for those 
years. Therefore, each of the scenario-runs constituted two TDMs for years 2025 and 2040. Figure 2 
depicts the exchange of data that took place in the iterative process between OPUS and TDM. Land use 
predictions from UrbanSim got input to the TDM, and travel conditions were input to the subsequent 
annual iterations of the UrbanSim land use model system. When UrbanSim is connected to TDM, it 
generates a summary of the household and job data at the DASZ level which feeds into TDM as an input 
data. 
 
Because of the loop-back between OPUS and TDM, the forecasted socioeconomic variables are thought 
to account for the future effect of transportation infrastructure. Therefore, it would be redundant to 
calibrate safety models with both socioeconomic and transportation-related variables. Moreover, as 
land use and transportation are proven to influence one-another, the dynamics of feeding 
socioeconomic data from OPUS into TDM (for a simulation year) would have impact on forecasted travel 
time (output from Cube); and in a similar way feeding travel skims from TDM to OPUS would have its 
influence on the socioeconomic data for the future years. 
 
The following section provides descriptive statistics of the socioeconomic variables that were used in 
both calibration and forecasting of the regional safety models. 
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Definition and Descriptive Statistics of the Zonal Variables 
 
Table 4 defines each of the variables and provides their descriptive statistics. Each of the variables were 
aggregated at the DASZ level. Some of the variables were transformed to minimize heteroscedasticity of 
their variance. Total number of employed people per zone were divided into three categories- basic, 
retail and service. Basic employment being jobs related to agriculture and manufacturing industry, retail 
employment captured number of people working in the retail sector, and the number of people in 
service were defined in the service employment variable. It is important to note that these employment 
variables signifies the number of people who are employed in a DASZ, and they may or may not be a 
resident to that DASZ. 
 

Regional Crash Prediction Models 
 
Crashes were modeled using a Negative Binomial model and two Bayesian models. Bayesian models 
were given a Poisson-Lognormal structure to fit the crash data appropriately. The difference between 
two Bayesian models lied in incorporating spatial heterogeneity. One of the Bayesian models, which will 
be termed as ‘spatial Bayesian model’, had a spatial error component defined in the model structure. 
The other Bayesian model did not have any spatial error component and will be termed as ‘non-spatial 
Bayesian model’. Previous studies (El-Basyouny and Sayed, 2009; Huang and Abdel-Aty, 2010; Siddiqui 
and Abdel-Aty, 2012) have shown that Bayesian models with spatial error component tend to fit and 
predict crash data well. However, the study investigated these models not only from their strict 
predictive fits but also in regards to their crash forecasts for future planning years.  
 
Negative Binomial models are relatively easy to estimate especially with built-in procedure available in a 
handful of commercial and open source statistical software. Bayesian models, on the other hand, can be 
a little bit of work in terms of coding and specifying an appropriate data structure. These models are 
possible to fit using open source software like R (The R Project) or OpenBUGS (openbugs.net); however, 
they demand that the modeler have a relatively greater degree of knowledge in coding. Also, to 
incorporate spatial weight matrix into the model, the modelers have to use some kind of mapping 
software (such as ArcMap). This study attempts to investigate if all this extra work indeed makes a 
difference when it comes to forecasting long range safety. 
 
Each of these models is discussed below. 
 

Negative Binomial Model 
 
It is the most simple among the three techniques applied in this study. NB regression is a type of 
generalized linear model in which the response variable is a count of the number of times an event 
occurs which in this case is ‘occurrence of crashes’. The probability distribution of the response variable 
y can be given by (Hilbe, 2011): 

P(y) = P(Y = y) =
Γ(y + 1

α⁄ )

Γ(y + 1)Γ(1
α⁄ )

(
1

1 + αμ
)

1
α⁄

(
αμ

1 + αμ
)

y

 

where, μ > 0 is the mean of Y, and α > 0 is the heterogeneity parameter. 
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Non-spatial Bayesian Poisson-Lognormal Model 
 
A Poisson-lognormal model was specified as follows: 
y[i] ~ Poisson (µ[i]) 
log(µ[i]) = β0 + βXi + θ[i] 
θ[i] ~ Normal (0, τθ) 
where, 
β0 = intercept term, 
β’s are the coefficient estimates of the model covariates (Xi), 
θ[i] = error component of the model capturing unstructured over-dispersion or unobserved 
heterogeneity component of the model, and 
τθ = precision parameter which is inverse of the variance; a prior gamma distribution is specified to τθ. 
 
The variance (1/τθ) provides the amount of variation not explained by the Poisson assumption (Lawson 
et al., 2003). A uniform prior distribution was assumed for β0. The model was run considering a non-
informative Normal(0, 100000) prior for β’s. 
 

Spatial Bayesian Poisson-Lognormal Model 
 
The spatial Bayesian Poisson-Lognormal model included an explicit error component, (φ[i]), to account 
for the portion of heterogeneity occurring due to spatial correlation. Spatial distribution was 
implemented by specifying an intrinsic Gaussian Conditional Autoregressive (CAR) prior with 

Normal(φ̅[i], τi
2) distribution recommended by Besag (1974).  

 
(φ[i]) is defined as- 

φ̅[i] = 
∑ φ[j]*Wiji≠j

∑ Wiji≠j
 

where, Wij is the element of adjacency matrix with a value of 1 if i and j are adjacent or 0 otherwise. 
 

Comparison of Model Fit 
 
Both Bayesian models were initialized using non-informative priors for the intercept, β’s, and error 
components. Each model had three Markov chains. Burn-in sample size and ‘thinning’ was set to 5000 
and 5, respectively. Model convergence and performance were tested based on chain convergence 
(trace plots), density plots, and Brooks-Gelman-Rubin statistics. OpenBUGS provides Bayesian Credible 
Intervals (BCIs) to draw inference on the significance of the parameter estimates.  
 
For classical models such as Negative Binomial, Akaike Information Criterion (AIC) is used for comparing 
non-nested models. AIC is defined as- 

AIC =  -2log (p(y|θ̂)) + 2k = D(θ̂) + 2p 

where, θ̂ = maximum likelihood estimate, and p = number of parameters in the model. 
The term 2p in the above equation serve to penalize more complex model. For model comparison 
predictive ability forms a natural criterion. AIC fits well in this respect since it is designed to optimize 
predictions on a replicate dataset of the same size. And a model with a lower AIC is favored. (Lunn et al., 
2012) 
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In a Bayesian context the posterior mean deviance D̅ = 𝐸[D] has been suggested as a measure of fit. 
However, in analogy to AIC a measure of ‘model complexity’ is necessary to trade off against D̅ as more 
complex Bayesian model will fit the data better- hence decreasing the value of D̅. To suggest a measure 
of effective number of parameters (pD ) Spiegelhalter et al. (2002) used an informal information-
theoretic argument defined by 

pD =  Eθ|y[-2log(p(y|θ))] +  2log (p (y|θ̃(y))) =  D̅ − D(θ̃)  

where, θ̃ is a ‘good’ plug in estimate of θ. If we consider θ̃ = E[θ|y] =  θ̅, pD reduces to ‘posterior mean 
deviance’ minus ‘deviance of posterior means’. For large sample size or in presence of non-informative 
or ‘vague’ prior (which is the case in this study), when conditions for asymptotic normality is present, 

θ̅  ≈  θ̂, the maximum likelihood estimate and pD reduces to p, the total number of parameters in the 
model. For complete discussion on this issue readers are referred to Lunn et al., 2012. 
 
The measure of  D̅ can now be combined with model complexity parameter pD to calculate an AIC-like 
measure called Deviance Information Criterion (DIC): 

DIC =  D̅  + pD = D(θ̅) + 2pD  
DIC thus acts as a generalization of AIC. Since for non-informative prior θ̅  ≈  θ̂, this results pD ≈  p and 
DIC ≈ AIC. 
 
It was found that for total crash estimation (Table 5) the Negative Binomial, non-spatial, and spatial 
Bayesian model had the following values respectively: 9355 (AIC), 6637 (DIC), and 5788 (DIC). These 
values for severe crash estimation (Table 6) were 7273 (AIC), 5533 (DIC), and 1083 (DIC) for Negative 
Binomial, non-spatial, and spatial Bayesian models, respectively. The difference among DIC/AIC values 
are considerably large which signifies the superiority of spatial Bayesian model in terms of predictive fit 
for both total and severe crashes. 
 

Parameter Estimates 
 
Table 5 and Table 6 provides parameter estimates for total and severe crash models, respectively. For 
both total and severe crashes total number of signalized intersections, population count, and 
employment types (basic, retail, and service) were found to be positively associated. These associations 
are intuitive have been supported by previous studies (Quddus, 2008; Pirdavani et al., 2012; Aguero-
Valverde, 2013). 
 
Median income was negatively associated with both types of crashes indicating that poverty stricken 
zones are more prone to crashes. This association is also concurrent with previous findings (Noland and 
Quddus, 2004b; Aguero-Valverde and Jovanis, 2006; Huang et al., 2010; Pirdavani et al., 2012). For 
Albuquerque metropolitan area this finding may be particularly important to ponder upon as poverty 
rate in Albuquerque has steadily increased over the past seven years (City of Albuquerque Progress 
Report). 
 
The number of single family dwelling unit (SFDU) was consistently negatively associated with total and 
severe crashes in both NB and non-spatial Bayesian models. On contrary, the number of multiple family 
dwelling unit (MFDU) was positively associated with both crash types in all three models. However, 
spatial Bayesian model for severe crashes deemed estimate of MFDU as statistically not significantly 
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different from zero at 95% Bayesian Credible Interval (BCI). Also, for both crash models spatial Bayesian 
model had positive estimates for SFDU.  
 
Among the County dummy variables, only Bernalillo and Valencia County dummies were found to be 
significantly different from zero at 95% BCI. Both of these dummy variables were negatively associated 
with total and severe crash types. 
 

Evaluation of Regional Safety Models for Different Planning Scenarios 
 
All three of the above mentioned models were applied to generate forecasts of total and severe crashes 
in every five-year interval starting 2011 until 2040. The forecasted socioeconomic data from land use 
and travel demand model iterations were used to calculate crash estimates for the future years.  Table 7 
provides the percent increase of crashes for the overall study area with respect to the base case 
(crashes occurring in between 2006 and 2010 inclusive) for three alternative scenarios. 
 
For all three alternative scenarios crash forecasts from the Bayesian spatial model were minimum 
among three candidate models. Considering percent increase of crashes over the planning horizon, 
Alternate 1 scenario was found to be the safest for both total and severe crash types. Crash forecasts 
between Alternative 2 and 3 showed slight differences. Recall that the difference between Alternate 2 
and 3 were in terms of constrained roadway and transit networks for years 2025 and 2040 (Table 2 and 
Table 3) which is why these two scenarios have the same forecasts until 2025. It is possible that the 
difference in socioeconomic forecasts between Alternate 2 and 3 were not large enough to be reflected 
in their corresponding crash forecasts from 2025 till 2040. 
 
As found in the previous section, the spatial Bayesian model performed the best in terms of crash 
predictability. Its superior goodness of fit most likely lies in being able to capture spatial heterogeneity 
among the DASZs. It was found that for total crashes, about 77.5% of the error was captured by the 
spatial error term (φ[i])). The same for severe crashes was about 77.1%. Inclusion of explicit error 
component for spatial heterogeneity seems more practical while modeling spatially aggregated count 
data. However it increases model complexity to some degree. If predictive fit of these models is put 
aside and only relative safety forecasts are compared among three scenarios, it can be observed that all 
three candidate models points towards Alternate 1 scenario to be safest in the planning horizon 
irrespective of modeling techniques. This implies that the approach of a safety forecast in the short-term 
versus long-term can be dictated by the accuracy of the predictability needed/expected from a regional 
safety model. Also, fitting spatial Bayesian models up until now in OpenBUGS or R involves multiple 
steps of data preparation and a certain level of coding expertise; and therefore, is not as straight 
forward as fitting NB models. 
 
Similar to Aguero-Valverde and Jovanis, 2006 and Siddiqui et al., 2012 this study found that the non-
spatial Bayesian models have better goodness of fits than that of NB models for predicting crashes. The 
forecasts for both total and severe crashes from the non-spatial Bayesian model, however, provided the 
largest variations between 2011 and 2040. 
 
To further investigate the forecast pattern of the alternative scenarios the resolution was changed from 
the total modeling area to the County level. Table 8 lists the forecasted total and severe crashes for 
three scenarios based on the spatial Bayesian model. The forecasts for Bernalillo County were much 
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similar to the overall safety forecast. And this is not surprising since Bernalillo County takes the lion 
share of the crashes in the modeling area. However, Sandoval County showed some interesting results. 
Sandoval County takes the second largest share of total and severe crashes in the study area (7.4% and 
8.5% respectively). It was found that Alternate 2 was the safest in Sandoval County for both total and 
severe crashes. This indicates that the spatial aggregation can play an important role in the decision 
making process. In general Sandoval County was more ‘responsive’ to the crashes. In thirty years total 
number of crashes in Sandoval County increased by almost three times in Alternative 1, and about two 
times for Alternative 2 and 3 while compared to that of Bernalillo County. Although, severe crashes in 
Sandoval County did not increase by the scale of total crash increase, the County still experienced 
considerably higher percentages of severe crashes compared to its neighboring Bernalillo County. 
 
As mentioned before, Bernalillo and Sandoval counties captured the majority of crashes. And from the 
above analysis certain differences in crash forecasts were found in these two counties. Therefore, to 
have a better understanding about County specific crash forecast, and also to gain insight into model 
transferability (County-specific versus region-wide), total and severe type crashes were modeled 
separately specific to Bernalillo and Sandoval County- as such four spatial Bayesian models were 
developed and are presented in Table 9 and Table 10. Out of 914 DASZs in the study area, Bernalillo 
County comprised of 660 DASZs, and there are 142 DASZs in Sandoval County. The forecasts from these 
models are presented in Table 12. Some of the interesting observations from the County-specific 
analysis are discussed below. 
 
Apart from the range of parameter estimates the main difference between Bernalillo and Sandoval total 
crash models (model-8a and -9a) were in the signs of coefficient estimates of total population, median 
income and single family dwelling units (SFDU). The negative estimate for population and positive 
estimate for median income in Bernalillo County (model-8a) is counter intuitive. However, positive 
association between number of crashes and affluent areas are not quiet uncommon in spatial crash 
modeling. Aguero-Valverde (2013) found similar association and reported that percentage of person 
under poverty line living in cantons (smaller political units with a local government) of Costa Rica had 
lower crash frequency for injury and property damage only types of crashes. The direction of association 
of parameters in spatial crash modeling can be affected by the size (scale) of the modeling-area, spatial 
unit of aggregation, and the confounding effect among the parameters. The correlation matrices for the 
County-specific models were provided in Table 11. For all four models (model-8a, 8b, 9a, 9b) moderate 
to high negative correlations were observed between total population & median income, and total 
population & SFDU.  
 
While comparing between region-wide (Table 8) and County-specific (Table 12) total crash forecasts, 
both Bernalillo and Sandoval County followed similar pattern. Similar to the region-wide model, 
Alternative 1 scenario was found to be the safest in Bernalillo County (with respect to total crashes). 
Alternative 2 was found to be the safest for total crashes in Sandoval County. Once again, County 
forecasts from Alternative 2 and 3 were found to be very similar. Interestingly, the forecasts during the 
end of thirty year planning horizon were also found to be close and considerably similar- 2036-2040 
forecast between Alternative 1 and 2 differed about 5% and 3% in Bernalillo and Sandoval County, 
respectively. But the change in the percent increase of total crash between 2011-2015 and 2036-2040 
were higher in Sandoval County than in Bernalillo County.  
 
Similar to the total crash models (model-8a and -9a) the differences in the signs of parameter estimates 
for total population and median income were observed for Bernalillo and Sandoval County’s severe 
crash models (model-8b and -9b) as well. But SFDU was positively associated with the number of severe 
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crashes in both of the counties. In addition, a similar pattern in the increase of severe crashes was 
observed between the region-wide (Table 8) and County-specific (Table 12) models. In regards to severe 
crashes Alternative 1 scenario was found to be the safest for Bernalillo County, and Alternative 2 was 
preferred for Sandoval County.  
 
All covariates presented in Table 9 and Table 10 were statistically significant at 95% Bayesian Credible 
Interval. The contribution of spatial heterogeneity within the total error structure was less in Sandoval 
County than in Bernalillo County for both total and severe crash models. φ[i] for Sandoval County was  
24.6% and 16.3% for total and severe crashes, respectively. The same (φ[i]) for Bernalillo County was 
80.8% and 80.1% for total and severe crashes, respectively. 
 
Given that the County-specific analysis did not necessarily provide any different pattern in the forecast 
for both total and severe crashes when compared with the region-wide model, it is reasonable to 
conclude that a region-wide model would be a more practical and less computationally-intensive route 
for long range safety forecasts. However, particular differences in parameter estimates were observed 
between the county-specific models. Therefore it might be beneficial and worth estimating County-
specific models for a relatively short-term safety predictions. Also, as commented before, the 
differences between different scenario forecasts were found to be wider in near future than distant 
years. 
 

Summary 
 
This study attempted to evaluate forecasting performances of regional safety models for different 
alternative scenario planning. Regional crash prediction models are often compared strictly based on 
their predictive fit. This study compared models beyond their predictive performance and investigated 
the role of model complexity (modeling techniques) and model granularity (spatial aggregation) may 
have in improving long range planning forecasts.  
 
The study used 2012 as a base year for the independent parameter set. Demographic, socioeconomic, 
roadway and transit networks were utilized in preparing the base year dataset. These parameters were 
used to model total and severe crashes that occurred in between 2006 and 2010 inclusive, in the study 
area which comprised the entirety of four counties in Central New Mexico. In order to forecast 
exogenous variables for future years, UrbanSim (a land use model) and Cube (travel demand model) 
were iteratively run for each of the alternative scenarios. The socioeconomic variables were forecasted 
every five years between 2011 and 2040. Forecasted socioeconomic data were then used to forecast 
crashes for every five years in the same time span.  
 
Among the three candidate models fitted for both total and severe crashes, the Bayesian model 
accounting for the spatial heterogeneity among DASZs outperformed the Negative Binomial and 
Bayesian model that did not account for spatial error in terms predictive fit. In general, the spatial 
Bayesian model forecasted the smallest increase in crash occurrences in future years. This may be a 
particularly important finding in terms of applying a model with a better fit since an unreasonably high 
increase of crashes (thus, deteriorating safety) would adversely affect public perception in the scenario 
planning process. The widest band of increase in crashes was observed from non-spatial Bayesian 
models which, in spite of its better predictive fit than Negative Binomial models, provided similar or 
worse safety forecasts for the alternative scenarios. 
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The effect of spatial granularity (region-wide versus County-specific) on model estimates and in turn on 
safety forecast was investigated. In order to understand whether an overall forecast would reveal a 
similar forecast pattern when compared to a smaller scale, County-specific models were developed for 
total and severe crashes. Percent increase in total and severe crashes showed a similar pattern (both in 
direction and scale) when compared between the region-wide and county-specific models.  
 

REFERENCES 
 
1. Abdel-Aty, M., C. Siddiqui, H. Huang, and X. Wang. Integrating Trip and Roadway Characteristics to 

Manage Safety in Traffic Analysis Zones. In Transportation Research Record: Journal of the 
Transportation Research Board, No. 2213, 2011, pp. 20–28 

2. Aguero-Valverde, J., Jovanis, P. P., 2006. Spatial Analysis of Fatal and Injury Crashes in Pennsylvania. 
Accident Analysis and Prevention 38, pp. 618-625 

3. Aguero-Valverde, J., 2013. Multivariate Spatial Models of Excess Crash Frequency at Area Level: Case 
of Costa Rica. Accident Analysis and Prevention 59, pp. 365-373 

4. Amoros, E., J. L. Martin, and B. Laumon. Comparison of Road Crashes Incidence and Severity 
Between Some French Counties. Accident Analysis and Prevention, Vol. 35, No. 4, 2003, pp. 537–547  

5. Besag, J., 1974. Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the 
Royal Statistical Society B 36(2), pp. 192-236 

6. City of Albuquerque Progress Report, Residents Living in Poverty, 
http://www.cabq.gov/progress/human-and-family-development/dc-10/indicator-10-1, Accessed on 
October 24, 2014 

7. Cressie, N. A. C., 1993. Statistics for Spatial Data. John Wiley & Sons, New York 
8. De Guevara, F. L., Washington, S. P., and Oh, J., 2004. Forecasting Crashes at the Planning Level: 

Simultaneous Negative Binomial Crash Model Applied in Tucson, Arizona. Transportation Research 
Record, No. 1897, pp. 191-199. 

9. Dubin, R. A., 1988. Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated 
Error Terms. Review of Economics and Statistics 70 (3), pp. 466-474 

10. El-Basyouny, K., and Sayed, T., 2009. Collision Prediction Models using Multivariate Poisson-
Lognormal Regression. Accident Analysis and Prevention 41, pp. 820-828 

11. FHWA Scenario Planning Guidebook, U.S. Department of Transportation, February 2011 
12. Hadayeghi, A., Shalaby, A. S., and Persaud, B. N., 2003. Macrolevel Accident Prediction Models for 

Evaluating Safety of Urban Transportation Systems. Transportation Research Record, No. 1840, pp. 
87-95. 

13. Hadayeghi, A., A. S. Shalaby, B. N. Persaud, and C. Cheung. Temporal Transferability and Updating of 
Zonal Level Accident Prediction Models. Accident Analysis and Prevention, Vol. 38, No. 3, 2006, pp. 
579–589  

14. Hadayeghi, A., A. S. Shalaby, and B. N. Persaud. Safety Prediction Models: Proactive Tool for Safety 
Evaluation in Urban Transportation Planning Applications. In Transportation Research Record: 
Journal of the Transportation Research Board, No. 2019, 2007, pp. 225–236  

15. Hilbe, J., 2011. Negative Binomial Regression, 2nd Edition, New York: Cambridge University Press 
16. http://www.openbugs.net/w/FrontPage , Accessed on October 20, 2014 
17. Huang, H., and Abdel-Aty, M., 2010. Multilevel Data and Bayesian Analysis in Traffic Safety. Accident 

Analysis and Prevention 42, pp. 1556-1565 



12 

18. Huang, H., Abdel-Aty, M. A., and Darwiche, A. L., 2010. County-level Crash Risk Analysis in Florida: 
Bayesian Spatial Modeling. Transportation Research Record 2148, pp. 27-37 

19. Karim, M. A., Wahba, M. M., and Sayed, T. Spatial Effects on Zone-Level Collison Prediction Models. 
Transportation Research Record: Journal of the Transportation Research Board, No. 2398, pp. 50-59 

20. Lawson, A. B., Browne, W. J., and Rodiero, C. L. V, 2003. Disease Mapping with WinBUGS and 
MLwiN. John Wiley & Sons Ltd., England 

21. Lord, D., and F. Mannering. The Statistical Analysis of Crash-Frequency Data: A Review and 
Assessment of Methodological Alternatives. Transportation Research Part A: Policy and Practice, 
Vol. 44, No. 5, 2010, pp. 291–305. 

22. Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D., The BUGS Book – A Practical 
Introduction to Bayesian Analysis, Chapman and Hall/CRC, October 2012 

23. Naderan, A., and J. Shahi. Aggregate Crash Prediction Models: Introducing Crash Generation 
Concept. Accident Analysis and Prevention, Vol. 42, No. 1, 2010, pp. 339–346 

24. Noland, R. B., and L. Oh. The Effect of Infrastructure and Demographic Change on Traffic-Related 
Fatalities and Crashes: A Case Study of Illinois County-Level Data. Accident Analysis and Prevention, 
Vol. 36, No. 4, 2004, pp. 525–532  

25. Noland, R. B., and Quddus, M. A., 2004a. Analysis of Pedestrian and Bicycle Casualties with Regional 
Panel Data. Transportation Research Record 1897, pp. 28-33. 

26. Noland, R. B., and Quddus, M. A. A., 2004b. A Spatially Disaggregate Analysis of Road Casualties in 
England. Accident Analysis and Prevention 36, pp. 973-984. 

27. Pirdavani, A., Brijs, T., Bellemans, T., Kochan, B., and Wets, G., 2012. Application of Different 
Exposure Measures in Development of Planning-Level Zonal Crash Prediction Models. 
Transportation Research Record: Journal of the Transportation Research Board, No. 2280, pp. 145-
153 

28. Pulugurtha, S. S., Duddu, V. R., and Kotagiri, Y., 2013. Traffic Analysis Zone Level Crash Estimation 
Models Based on Land Use Characteristics. Accident Analysis and Prevention 50, pp. 678-687 

29. Quddus, M. A., 2008. Modelling Area-wide Count Outcomes with Spatial Correlation and 
Heterogeneity: An Analysis of London Crash Data. Accident Analysis and Prevention 40, pp. 1486-
1497 

30. Siddiqui, C., and Abdel-Aty, M., 2012. Nature of Modeling Boundary Pedestrian Crashes at Zones. 
Transportation Research Record: Journal of the Transportation Research Board, No. 2299, pp. 31-40 

31. Siddiqui, C., Abdel-Aty, M., and Choi, K., 2012. Macroscopic Spatial Analysis of Pedestrian and Bicycle 
Crashes. Accident Analysis and Prevention 45, pp. 382-391 

32. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. V. D., 2002. Bayesian Measures of Model 
Complexity and Fit, Journal of the Royal Statistical Society B 64 (4), pp. 583-639 

33. The Open Platform for Urban Simulation and UrbanSim Version 4.3, User Guide and Reference 
Manual, The UrbanSim Project, University of California Berkley, and University of Washington, 
January 23, 2011 

34. The R Project for Statistical Computing, http://www.r-project.org/, Accessed on October 20, 2014 
35. www.urbanism.org, Accessed on October 20, 2014 
  



13 

TABLES 
 
Table 1: Few Examples of Previous Studies on Macro-level Crash Prediction 

Reference Spatial Aggregation Applied Models Modeled Crash Type(s) 

Hadayeghi et al. 
(2003) 

Traffic Zones of City of Toronto Negative Binomial; Geographically 
Weighted Regression 

Total; Severe (fatal and 
nonfatal injury) 

Aguero-Valverde 
and Jovanis 
(2006) 

Counties of Pennsylvania Negative Binomial; Full Bayes 
Hierarchical Model with Spatial 
and Temporal Effects  

Injury; Fatal 

Quddus (2008) Census Wards of the Greater 
London Metropolitan Area 

Negative Binomial; Spatial 
Autoregressive; Spatial Error 
Model; Spatial Poisson-Lognormal 

Fatal; Serious Injury; 
Slight Injury 

Huang et al. 
(2010) 

Counties of Florida Spatial Poisson-Lognormal Total; Severe 

Pirdavani et al. 
(2012) 

Traffic Analysis Zones of Flanders, 
Belgium 

Negative Binomial Injury 

Aguero-Valverde 
(2013) 

Cantons of Costa Rica Multivariate Spatial Model using 
Full Bayes Hierarchical Approach 

Fatal; Injury; Property 
Damage Only 

Karim et al. 
(2013) 

Traffic Analysis Zones of Metro 
Vancouver, Canada 

Negative Binomial; 
Spatial Poisson-Gamma 

Total; Severe; Property 
Damage Only 

Pulugurtha et al. 
(2013) 

Traffic Analysis Zones from the 
City of Charlotte and Mecklenburg 
County, North Carolina 

Negative Binomial Total; Injury; Property 
Damage Only 

 
Table 2: TDM Scenario Specifications for 2025 

Scenario 
Parameters 

Alternate 1 Alternate 2 Alternate 3 

Roadway 
Network 

2025 Network 2025 Network 2012 Network 

Transit 
Network 

2012 Network 
(no improvement) 

2025 Network 2012 Network 
(no improvement) 

Socioeconomic 
(SE) Data 

2025 SE 2025 SE 2025 SE 

 
Table 3: TDM Scenario Specifications for 2040 

Scenario 
Parameters 

Alternate 1 Alternate 2 Alternate 3 

Roadway 
Network 

2040 Network 2040 Network 2025 Network 

Transit 
Network 

2012 Network + 
limited improvement 

2040 Network 2025 Network 

Socioeconomic 
(SE) Data 

2040 SE 2040 SE 2040 SE 
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Table 4: Variables Definitions 

Variable 
Acronym 

Variable Definition Mean Standard 
Deviation 

Min Max 

Response Variables 

Cr06to10 Total number of crashes between 2006 and 2010 
inclusive 

94.06 124.38 0 1013 

SevCr06to10 Total number of severe crashes between 2006 and 
2010 inclusive. Severe crashes are sum of fatal and 
injury type crashes. 

27.66 36.07 0 275 

Dependent Variables 

SigInt Total number of signalized intersections 1.18 1.47 0 9 

SFDU Single family dwelling units 332.6 342.13 0 2180 

MFDU Multiple family dwelling units 81.8 202.73 0 2085 

CountyXXX Dummy variables. Each for a County in the study 
area. Examples include- CountyBER for Bernalillo 
County, CountyVAL for Valencia County, etc. 

- - - - 

LnPop Logarithmic transformation of the total population 
ln(total population + 1) 

5.63 2.5251 0 8.75 

LnBasic Logarithmic transformation of the Basic Employment 
ln(basic employment + 1)  

3.04 1.8557 0 10.04 

LnRetail Logarithmic transformation of the Retail Employment 
ln(retail employment + 1)  

2.75 2.1598 0 7.6 

LnService Logarithmic transformation of the Service 
Employment 
ln(service employment + 1)  

3.99 2.108 0 9.35 

LnEmp Logarithmic transformation of the Total Employment 
which is a sum of Basic, Retail, and Service 
Employment 
ln(total employment + 1) 

4.71 2.1512 0 10.04 

LnMedInc Logarithmic transformation of Median Income 8.88 4.174 0 12.04 

Rent Total number of rented units 125.03 0.02 0 1819 

Own Total number of owner occupied housing units 259.35 0.0275 0 1751 

UNMenroll Total number of students enrolled in University of 
New Mexico 

30.78 771.67 0 23111 

CNMenroll Total number of students enrolled in Central New 
Mexico  

28.86 438.18 0 10944 
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Table 5: Parameter Estimates from Total Crash Models  

Variables 

Non-Bayesian NB Model 
(Model-5a) 

Bayesian model without accounting spatial 
correlation (Model-5b) 

Bayesian model accounting spatial correlation 
(Model-5c) 

Estimates P-value Mean Std. Dev. 

Bayesian Credible 
Interval Mean Std. Dev. 

Bayesian Credible 
Interval 

2.5% 97.5% 2.5% 97.5% 

SigInt 0.2044 < 0.001 0.2344 0.0302 0.1804 0.297 0.2028 0.0274 0.1529 0.261 

LnPop 0.1131 0.0002 0.1203 0.032 0.0536 0.1709 0.0668 0.0318 0.0111 0.1265 

LnBasic 0.1033 < 0.001 0.1087 0.0261 0.0603 0.1583 0.0606 0.0265 0.0113 0.115 

LnRetail 0.1511 < 0.001 0.1994 0.029 0.1412 0.2529 0.124
 

0.0257 0.0716 0.1706 

LnService 0.1619 < 0.001 0.2237 0.0254 0.1748 0.2715 0.1781 0.0281 0.1254 0.2337 

LnMedInc - 0.0641 < 0.001 - 0.0357 0.0125 - 0.0595 - 0.01042 - 0.021 0.0197 -0.0582 0.01493 

SFDU - 1.951E-4 0.1748 - 1.09E-4 1.66E-4 - 4.29E-4 2.03E-04 1.59E-4 1.38E-4 - 1.03E-4 4.39E-4 

MFDU 3.159E-4 0.1011 2.20E-4 2.12E-4 - 2.22E-4 6.13E-04 4.00E-5 1.91E-4 - 3.40E-4 4.21E-4 

CountyBER 0.2681 0.0046 0.2532 0.099 0.0686 0.4733 - 0.4514
 

0.2228 - 0.8486 0.1459 

CountyVAL - 0.4646 0.0020 - 0.4256 0.1675 - 0.7553 - 0.1075 - 0.7375
 

0.6007 - 1.992 0.4361 

           

Intercept 2.2889 < 0.001 0.9874 0.1362 0.7385 1.255 2.184 0.1766 1.754 2.528 

    

AIC 9355 - - 

DIC - 6637 5788 
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Table 6: Parameter Estimates from Severe Crash Models  

Variables 

Non-Bayesian NB Model 
(Model-6a) 

Bayesian model without accounting spatial 
correlation (Model-6b) 

Bayesian model accounting spatial correlation 
(Model-6c) 

Estimates P-value Mean Std. Dev. 

Bayesian Credible 
Interval Mean Std. Dev. 

Bayesian Credible 
Interval 

2.5% 97.5% 2.5% 97.5% 

SigInt 0.1943 < 0.001 0.2088 0.0311 0.1472 0.2704 0.1881 0.0268 0.1358 0.2407 

LnPop 0.1015 0.0008 0.1062 0.0324 0.0389 0.1696 0.0545 0.0413 - 0.0232 0.1335 

LnBasic 0.0916 0.0003 0.0888 0.0277 0.0321 0.1425 0.0461 0.0259 - 0.0049 0.0967 

LnRetail 0.1421 < 0.001 0.1827 0.0270 0.1288 0.2329 0.128
 

0.0253 0.0759 0.1776 

LnService 0.1486 < 0.001 0.1959 0.0293 0.1427 0.2569 0.1432 0.0282 0.0883 0.198 

LnMedInc - 0.056 < 0.001 - 0.0416 0.0151 -0.0682 - 0.0088 - 0.0155 0.0204 - 0.0546 0.0275 

SFDU - 1.885E-4 0.1831 - 1.14E-4 1.55E-4 - 4.20E-4 1.81E-4 1.05E-4 1.61E-4 - 2.06E-4 4.03E-4 

MFDU 3.639E4 0.0526 2.63E-4 2.17E-4 - 1.66E-4 6.77E-4 9.38E-5 1.90E-4 - 2.80E-4 4.69E-4 

CountyBER 0.1451 0.1238 0.169 0.109 - 0.0506 0.3824 - 0.5593
 

0.3116 - 1.134 0.0634 

CountyVAL - 0.4466 0.0031 - 0.4153 0.1697 - 0.7523 - 0.0776 - 0.8207
 

0.5854 - 1.986 0.278 

           

Intercept 1.3229 < 0.001 0.3129 0.1366 0.0313 0.5721 1.385 0.2949 0.8422 1.968 

    

AIC 7273 - - 

DIC - 5533 1083 
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Table 7: Percent Increase of Crashes for Different Scenarios in Five-Year Interval 

Alternate 1 Scenario 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Negative 
Binomial Model 

6.98 10.75 15.99 21.02 26.31 30.54  Negative 
Binomial Model 

5.67 9.41 14.34 19.07 24.14 28.24 

Spatial Bayesian 
Model 

2.15 5.34 9.55 13.53 17.27 20.36  Spatial Bayesian 
Model 

0.79 3.7 7.34 10.68 13.85 16.45 

Non-Spatial 
Bayesian Model 

4.14 9.55 16.6 23.54 30.21 35.88  Non-Spatial 
Bayesian Model 

2.41 6.75 12.61 18.4 24.05 28.84 

 

Alternate 2 Scenario 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Negative 
Binomial Model 

6.49 14.42 22.23 30.75 38.17 45.52  Negative 
Binomial Model 

5.17 12.39 19.68 27.93 35.12 42.41 

Spatial Bayesian 
Model 

2.05 7.34 13.19 18.12 22.34 26.26  Spatial Bayesian 
Model 

0.57 5.09 10.2 14.64 18.41 21.95 

Non-Spatial 
Bayesian Model 

4.35 14.92 28.51 40.67 51.18 62.14  Non-Spatial 
Bayesian Model 

1.79 9.98 20.91 31.08 39.79 48.95 

 

Alternate 3 Scenario 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Negative 
Binomial Model 

6.49 14.42 22.23 30.31 37.94 45.42  Negative 
Binomial Model 

5.17 12.39 19.68 27.5 34.96 42.48 

Spatial Bayesian 
Model 

2.05 7.34 13.19 18.08 22.52 26.45  Spatial Bayesian 
Model 

0.57 5.09 10.2 14.54 18.48 21.97 

Non-Spatial 
Bayesian Model 

4.35 14.92 28.51 40.04 51.14 61.41  Non-Spatial 
Bayesian Model 

1.79 9.98 20.91 30.39 39.59 48.07 
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Table 8: Percent Increase of Crashes in Bernalillo and Sandoval Counties Based on Spatial Poisson-Lognormal Model Forecast (Predictions 
Calculated from the Region-Wide Model) 

 

Bernalillo County 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Alternate 1 
Scenario 

2.15 4.79 8.58 12.13 15.26 17.56  Alternate 1 
Scenario 

0.89 3.33 6.65 9.69 12.37 14.41 

Alternate 2 
Scenario 

2.51 7.79 13.32 17.66 21.4 24.9  Alternate 2 
Scenario 

1.12 5.65 10.54 14.58 18.01 21.3 

Alternate 3 
Scenario 

2.51 7.79 13.33 17.58 21.55 24.92  Alternate 3 
Scenario 

1.12 5.65 10.54 14.41 18.03 21.16 

 

Sandoval County 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Alternate 1 
Scenario 

8.73 18.9 27.96 36.42 45.63 55.17  Alternate 1 
Scenario 

6.06 14.16 20.89 27 33.98 40.58 

Alternate 2 
Scenario 

2.28 10.18 21.04 32.16 41.5 49.24  Alternate 2 
Scenario 

0.81 7.41 15.51 23.66 30.52 36.1 

Alternate 3 
Scenario 

2.28 10.18 21.04 32.95 41.86 50.45  Alternate 3 
Scenario 

0.81 7.41 15.51 24.4 30.9 36.93 
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Table 9: Crash Models Developed Specific for Bernalillo County 

Variables 

Bayesian model for Total Crashes accounting spatial 
correlation (Model-8a) 

Bayesian model for Severe Crashes accounting 
spatial correlation (Model-8b) 

Mean Std. Dev. 

Bayesian Credible 
Interval Mean Std. Dev. 

Bayesian Credible 
Interval 

2.5% 97.5% 2.5% 97.5% 

SigInt 0.2088 0.03 0.1494 0.2669 0.1966 0.0293 0.1387 0.2541 

LnPop - 0.0161 0.0461 - 0.1076 0.074 0.0086 0.0462 - 0.0808 0.0992 

LnBasic 0.0641 0.031 0.0035 0.125 0.0448 0.0306 - 0.015 0.104 

LnRetail 0.1269 0.0288 0.069 0.184 0.12
 

0.0277 0.0676 0.1754 

LnService 0.1878 0.0306 0.1301 0.2505 0.1736 0.0298 0.1168 0.2333 

LnMedInc 0.0216 0.0238 - 0.0225 0.0682 0.0061 0.0248 - 0.0422 0.0551 

SFDU 3.14E-4 1.79E-4 - 5.12E-5 6.56E-4 1.69E-4 1.84E-4 - 1.94E-4 5.21E-4 

MFDU 9.72E-5 1.96E-4 - 2.83E-4 4.82E-4 7.13E-5 1.86E-4 - 2.86E-4 4.45E-4 

         

Intercept 1.897 0.1835 1.502 2.244 0.9616 0.1738 0.6228 1.296 

 
Table 10: Crash Models Developed Specific for Sandoval County 

Variables 

Bayesian model for Total Crashes accounting spatial 
correlation (Model-9a) 

Bayesian model for Severe Crashes accounting 
spatial correlation (Model-9b) 

Mean Std. Dev. 
Bayesian Credible 

Interval Mean Std. Dev. 
Bayesian Credible 

Interval 

2.5% 97.5% 2.5% 97.5% 

SigInt 0.2092 0.1063 4.06E-4 0.4169 0.2203 0.111 0.0097 0.4356 

LnPop 0.1503 0.0932 - 0.0325 0.3266 0.1426 0.0867 - 0.0316 0.3125 

LnBasic 0.1497 0.1064 - 0.0544 0.3565 0.1211 0.1082 - 0.0861 0.3419 

LnRetail 0.1349 0.0906 - 0.0422 0.3183 0.1452
 

0.0914 - 0.0325 0.3213 

LnService 0.1297 0.0895 - 0.0461 0.3014 0.0966 0.0903 - 0.0801 0.2723 

LnMedInc - 0.0415 0.0436 - 0.1224 0.0525 - 0.0571 0.039 - 0.1302 0.0252 

SFDU - 6.70E-5 4.07E-4 - 8.60E-4 7.01E-4 - 1.04E-4 3.94E-4 - 8.59E-4 6.74E-4 

MFDU 0.0018 0.0015 - 0.001 0.0049 0.0017 0.0014 - 9.89E-4 0.0045 

         

Intercept 1.13 0.3779 0.4106 1.875 0.5139 0.3739 - 0.234 1.221 
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Table 11: Correlation matrices for Crash Models Developed Specific for Bernalillo and Sandoval County 

Bernalillo County - Total Crash Model (Model-8a)  Bernalillo County - Severe Crash Model (Model-8b) 

 SigInt LnPop LnBasic LnRetail LnService LnMedInc SFDU MFDU   SigInt LnPop LnBasic LnRetail LnService LnMedInc SFDU MFDU 

SigInt 1.000         SigInt 1.000        

LnPop 0.033 1.000        LnPop 0.072 1.000       

LnBasic -0.090 -0.075 1.000       LnBasic -0.137 -0.040 1.000      

LnRetail 0.361 -0.012 -0.243 1.000      LnRetail -0.027 0.044 -0.290 1.000     

LnService 0.103 -0.108 0.028 0.092 1.000     LnService 0.013 -0.110 -0.077 -0.248 1.000    

LnMedInc -0.176 -0.813 0.133 -0.061 0.081 1.000    LnMedInc -0.086 -0.843 0.076 -0.020 0.031 1.000   

SFDU -0.004 -0.625 -0.013 0.036 0.134 0.356 1.000   SFDU -0.043 -0.618 -0.062 -0.099 0.067 0.398 1.000  

MFDU 0.109 -0.372 0.063 0.088 -0.001 0.139 0.305 1.000  MFDU -0.055 -0.432 -0.005 -0.068 0.005 0.292 0.312 1.000 

   

Sandoval County - Total Crash Model (Model-9a)  Sandoval County - Severe Crash Model (Model-9b) 

 SigInt LnPop LnBasic LnRetail LnService LnMedInc SFDU MFDU   SigInt LnPop LnBasic LnRetail LnService LnMedInc SFDU MFDU 

SigInt 1.000         SigInt 1.000        

LnPop 0.103 1.000        LnPop 0.131 1.000       

LnBasic -0.041 -0.004 1.000       LnBasic -0.056 -0.029 1.000      

LnRetail -0.063 0.028 -0.314 1.000      LnRetail -0.133 0.061 -0.383 1.000     

LnService -0.030 -0.171 -0.334 -0.481 1.000     LnService -0.062 -0.186 -0.302 -0.483 1.000    

LnMedInc -0.208 -0.616 0.029 -0.096 0.118 1.000    LnMedInc -0.226 -0.617 0.075 -0.094 0.148 1.000   

SFDU -0.130 -0.629 -0.173 0.107 0.020 0.282 1.000   SFDU -0.172 -0.634 -0.112 0.025 -0.004 0.278 1.000  

MFDU 0.032 -0.091 -0.081 0.050 -0.008 -0.080 0.090 1.000  MFDU -0.232 -0.122 -0.035 -0.040 -0.022 0.010 0.103 1.000 
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Table 12: Percent Increase of Crashes in Bernalillo and Sandoval Counties Based on Spatial Poisson-Lognormal Model Forecast (Predictions 
Calculated from Each County-Specific Model) 

 

Bernalillo County 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Alternate 1 
Scenario 

2.65 6.1 9.78 12.88 15.72 17.81  Alternate 1 
Scenario 

1.5 4.19 7.44 10.34 12.9 14.78 

Alternate 2 
Scenario 

4.32 7.94 12.38 16.4 19.76 23.1  Alternate 2 
Scenario 

2.28 5.67 9.81 13.42 16.47 19.37 

Alternate 3 
Scenario 

4.32 7.94 12.38 16.12 19.66 22.9  Alternate 3 
Scenario 

2.28 5.67 9.81 13.22 16.42 19.27 

 

Sandoval County 

Total Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

 Severe Crash 
Forecasts 

2011-
2015 

2016-
2020 

2021-
2025 

2026-
2030 

2031-
2035 

2036-
2040 

Alternate 1 
Scenario 

10.34 21.86 31.18 39.27 48.35 58.15  Alternate 1 
Scenario 

5.47 14.41 21.4 27.27 34.23 41.17 

Alternate 2 
Scenario 

2.04 11.95 23.23 35.71 46.29 55.03  Alternate 2 
Scenario 

-1.05 7.02 15.56 24.59 32.23 38.51 

Alternate 3 
Scenario 

2.04 11.95 23.23 36.77 46.55 56.01  Alternate 3 
Scenario 

-1.05 7.02 15.56 25.49 32.43 38.98 
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FIGURES 
 

 
 
Figure 1: Study Area 
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Figure 2: UrbanSim-Cube interaction 

 

UrbanSim 

• OPUS starts with 2012 Base year data and continues to forecast until 2025.  

• At 2025 SE data are generated and exported to Cube to run TDM for that year 

Cube 

• Cube uses 2025 SE data as one of the inputs and runs TDM model representing the 
corresponding scenario for year 2025.  

• After the run completes Travel Time Matrix is then exported back to OPUS. 

UrbanSim 

• OPUS runs from 2026 to 2040 using the 2025 Travel Time data that was output from 
the 2025 TDM. At the year 2040 OPUS generates 2040 SE data and feeds it back to Cube 
to run TDM for year 2040. 

Cube 

• At this step 2040 SE data is used as one of the inputs for the 2040 Travel Demand 
scenario.  

• Like before, once TDM run is completed, Cube exports the Travel Time Matrix for 2040 
to OPUS. 

UrbanSim 
• OPUS receives 2040 Travel Time from Cube and ends at year 2040. 


